
IBM i: An Unofficial Introduction
OS/400

Getting Started With The Future Systems Legacy

Hugo Landau

Contents

1 What is IBM i? 5
1.1 The Strangest Operating System In The World 5
1.2 Back To The Legacy . 7
1.3 IBM Block Terminals . 9
1.4 Anatomy of an IBM i System . 10
1.5 The PowerPC AS Architectural Extensions In Detail 11

1.5.1 Theory . 12
1.5.2 Practice . 13

1.6 The Machine Interface . 16
1.6.1 Object Types . 17

2 Using IBM i 19
2.1 Installation and IPL . 19
2.2 Using a 5250 . 20

3

4 CONTENTS

Chapter 1

What is IBM i?

1.1 The Strangest Operating System In The World

Actually, probably not by far. There’s plenty of strange history in the field of computing.
But that makes a good introduction, so let’s go with it.

IBM i is different. You might already know this and think you understand how different
it is, but that’s just peanuts to how different it actually is.

Here are some things that make it different:

• It doesn’t have a filesystem.1 Instead, it is an “object-oriented” operating system.
Objects are stored in “libraries”, which are roughly analogous to directories. Unlike
a typical filesystem, these objects aren’t just bytestreams; they have a type, the
internal representation of their contents is not exposed, and you can only perform
operations on them appropriate for that type.

• Instead, it has an SQL database built into the kernel. An example of a type of
object is a “Physical File” (PF), which means a table in SQL terminology. You can
create a PF with some given schema, insert rows into it, query it, etc. The internal
byte representation of this table is undefined and inaccessible to the user — the
operating system only exposes these high level semantics.

• It is impossible to run native, machine code programs. In this regard, it’s a bit
like a web browser: programs are written in some source language (in the case
of a web browser, JavaScript) and (for performance’s sake) translated to machine
code by a trusted just-in-time compiler. Besides the kernel itself, all machine code
executed by the system is generated by the kernel. It’s a bit like if the Java VM
was the basis for an entire operating system — but in fact, OS/400 predates Java
entirely.

1Actually, in the end it got one tacked on for its POSIX compatibility environment (“Integrated File Sys-
tem” (IFS)). It’s not part of the original architecture and is very much something bolted on the side, though,
so we don’t discuss it here.

5

6 CHAPTER 1. WHAT IS IBM I?

In fact, it’s interesting that this approach, originally invented by IBM, has been res-
urrected so many times; with Java, with .NET, and with JavaScript. The concept of
using a trusted compiler at the kernel level also has been resurrected; Microsoft’s
Singularity project sought to define an entire operating system in C#/.NET. Be-
cause all machine code was generated by a trusted translator from .NET byte-
code, security and isolation invariants are enforced by the trusted translator, not
hardware virtual memory protections implemented by the CPU. The Singularity
research paper mentions that this allowed virtual memory to be disabled, avoiding
the need for TLB lookups and increasing performance. More recently, an open
source project (Nebulet) has been experimenting a kernel that executes only We-
bAssembly, a bytecode designed to be easily translatable to machine code for
common architectures, again using a machine code translator as part of the trusted
code base (TCB) rather than hardware memory protection.
Another benefit of this approach is hardware architecture independence. The IBM
i kernel could be ported to a different CPU ISA, and all programs built for IBM i
would continue to be able to run without recompilation. In fact, such a transition
has happened in the past, when IBM moved from running IBM i on CISC CPUs to
running on Power ISA RISC CPUs.

• Its “single level storage” (SLS) architecture. Broadly speaking, this means that ev-
ery object in the system (on disk, etc.) has a 64-bit virtual address assigned to it,
whether or not the object is currently in memory. The kernel automatically pages
in these objects when the corresponding area of virtual memory is accessed. This
means that the bookkeeping structures on disk predominantly deal with the map-
ping of 64-bit addresses to disk block addresses (rather than mapping filenames,
strings, to disk block addresses as in a conventional filesystem).
Aspects of this approach can be found in modern incarnations of other OSes.
POSIX-style OSes allow you to open files (using a filename) and then map them
into memory using the mmap call. The data of the file won’t all be loaded into
memory at once, but will be paged in by the kernel as you access different regions
of the virtual memory assigned to that file by the mmap call. But each process has
its own address space and the virtual address assigned to a file will vary with each
invocation of the program. If you want to think of SLS in POSIX terms, think of it
as though every object stored on every disk in the system is mmap’d into every
process at all times, and at persistent, unchanging addresses.

• You may wonder how this can possibly be secure. The answer is given above;
because the only machine code executed directly is that generated by the trusted
translator in the kernel, the kernel can assure itself that no program can access
arbitrary memory locations by simply refusing to generate machine code that does
so. On a POSIX system, you can write *(int*)0xDEADBEEF in C — the C specifi-
cation would tell you off for doing so, and you’d better hope there’s valid memory
mapped at 0xDEADBEEF, but it will in practice work so long as that is the case. In
IBM i, pointers have to come from a legitimate source and cannot be “forged”.

1.2. BACK TO THE LEGACY 7

To enhance performance, this is tracked using a tagged memory system, in which
a single bit of metadata is stored for every word of ordinary RAM. A pointer to
memory in IBM i is 16 bytes long2 — and is only considered valid if the metadata
bits for all of the words comprising it are all set. The CPU automatically clears
the metadata bit if one of these words is modified arbitrarily. The machine code
generated by the kernel uses a special CPU instruction to set these tag bits, but it
only generates that instruction to “bless” pointers which have come from a source
considered legitimate by the kernel.
This metadata system is an architectural extension to the Power ISA on which
modern IBM i runs. Since there’s one tag bit for every word of memory in the
entire system, you might wonder exactly where these tag bits are stored. Origi-
nally, AS/400s had special extra-wide memory modules with additional memory
to store the tags. Modern IBM Power servers, however, take industry-standard
ECC DIMMs. It’s understood that the tag bits are stored via the clever use of ECC
syndrome so as to allow one extra bit of information to be stored per every 8 or 16
bytes of memory. For more information, see § 1.5 (The PowerPC AS Architectural
Extensions In Detail).

1.2 Back To The Legacy

Let’s be honest: IBM i is a legacy system. Yet even given this fact, in some ways it
comes across as more futuristic than contemporary, mainstream operating systems. A
product of IBM’s “Future Systems Division” — their mission being to bluesky new ideas
in systems design — it was ahead of its time in the 1980s and arguably is still ahead of
its time. At the same time, anyone who has accessed an IBM i system via a terminal full
of lime green text will appreciate that this is a system that time forgot.

As one of IBM’s “midrange” systems, IBM i exists to service boring business func-
tions. Payroll, warehouse inventory; if you have some deeply boring bookkeeping to
take care of and need an extremely reliable system to that end, IBM i has you covered.

So IBM i is at once extremely advanced technology, applied to the most mundane
of ends. If you are a retail employee, you could easily use an IBM i system via a dated
greenscreen and never appreciate the absurd and improbable sophistication of the sys-
tem that lies behind it. It’s a bit like encountering an unreal computer of extraterrestrial
origin and almost incomprehensible sophistication that was transported back in time 100
years in a freak timewarp but which is now being used solely to keep the accounts of a
random credit union in Calgary.

I don’t say this to express snobbery at these business functions: they’re important,
and when they stop working, everyone pays. In the last few years in the United Kingdom,
multiple banks have had their IT systems explode, temporarily causing people to have

2Since IBM i uses a 64-bit virtual address space, only half of this is needed for the pointer. The other
half is used to store a few bits of metadata about the pointer but is otherwise largely unused. This might
be considered extreme futureproofing on the part of IBM.

8 CHAPTER 1. WHAT IS IBM I?

difficulty accessing their money. IBM i’s reliability is to its credit. At the same time, the
more one learns about the weird and little-known internals of IBM i, one can’t but help
but feel that this is an architecture that should have changed the world.

I’ve heard it said that IBM is simultaneously the best and the worst custodian for IBM
i. The best, because any other company would have canned it years ago; the worst,
because at the same time it has been woefully neglected, with the IBM i department
devoid of funding for anything really other than maintenance.

We have IBM to thank for IBM i continuing to be a maintained OS. At the same time,
without the internal funding to develop the OS further, it’s withered and is being kept on
life support.

I’ve previously written about the “cultural defeat” of Microsoft in recent times3. What
I mean by this is that POSIX environments (Linux, OS X) have come to dominate as the
preferred environments of developers. Windows does not come from a POSIX culture;
modern Windows is a result of the combined influence of OpenVMS (which informed
the design of Windows NT) and Windows 98, itself influenced by DOS and OS/2. As a
platform, it does not have a “blood” relation to any POSIX-like system. But increasingly
few developers view that OS environment as their desired development environment,
which inevitably means that more and more developers will approach Windows with a
POSIX mindset. This diminishes the viability of the cultural differences of Windows as
a technology stack. In an effort to respond to this changing situation, with Windows 10,
Microsoft has added binary compatibility for Linux executables in the form of the new
“Windows Subsystem for Linux” (WSL). In essence, you could view this as a form of
cultural capitulation — an acceptance that POSIX has won, and that trying to lure a new
generation of developers to a Windows-centric way of thinking is a lost battle. It logically
and inevitably follows that more and more of Windows will be “converted” to a POSIX-
esque environment; not because the existing components will be changed (they must
necessarily remain as they are for compatibility purposes), but because more and more
development of Windows itself will be to add functionality to the new Linux-compatible
subsystem, and to other new “alien” annexes of Windows that are added to appeal to
the new dominant sensibilities of how an OS should work.

The same dynamic has occurred for IBM i, with the tacked-on PASE environment —
a POSIX compatibility environment which was added to IBM i, providing some level of
binary compatibility with AIX, IBM’s UNIX variant. More and more development on IBM
i now happens within the PASE playpen of a UNIX shell environment. The native IBM i
environment, by comparison, is renovated less and less as time goes on.

In both the case of Windows’s WSL and IBM i’s PASE, the “impedence discontinu-
ities” between the native and POSIX-compatible environments are enormous, which of
course discourages developers attracted by the POSIX environment from jumping the
gap to the native environment, thus further reinforcing the cultural trend towards POSIX,
POSIX, POSIX. These impedence discontinuities are conceptual and semantic conun-
drums; they cannot be coded away by engineering prowess. The concept of objects,
libraries, databases that constitute an IBM i system simply do not map coherently to

3https://www.devever.net/~hl/windowsdefeat

https://www.devever.net/~hl/windowsdefeat

1.3. IBM BLOCK TERMINALS 9

POSIX’s concept of a filesystem formed of structureless, byte-oriented files.
If it’s not obvious, although I think this cultural effect is undefeatable, I’m nonetheless

not a fan of it. POSIX has won; but with it OS research is even more dead than it has
been for the past few decades. In this book, I therefore intend to focus wholly on IBM i
as it was originally envisioned; little attention will be given to the PASE environment.

1.3 IBM Block Terminals

There are, broadly, two types of terminal: character terminals and block terminals. If you
have ever used a command line on a POSIX system, you’ve used a character terminal.
The Digital Equipment Corporation (DEC) made a popular line of character terminals
such as the VT100, and modern terminal emulators such as xterm hail from this long
legacy, implementing a compatible set of control commands.

Most people are accustomed to character terminals and how they work. IBM’s block
terminals are quite different and tend to provide more sophisticated, more “GUI-like” user
interfaces. Two block terminals in particular are widely known:

• The IBM 3270, used to interface with IBM mainframes such as System/360;

• The IBM 5250, used to interface with IBM midranges such as IBM i systems and
their predecessors, System/34, System/36 and System/38.

While these were once physical devices (they are in fact model numbers), terminal em-
ulator programs are now invariably used instead. But just as with the VT100, these
numbers are used to denote the type of interface a terminal is expected to conform to. A
TELNET binding for 5250 datastreams is defined, and TELNET is thus commonly used
to connect to IBM i systems over the network. Use of SSL for security is now common.

The reason these are called “block terminals” is because communication to and from
the terminal occurs in blocks of information, rather than individual characters. When you
use a character terminal, you’ve probably noticed at some point or another the fact that
characters are processed one by one, as fast as they can be produced (by whatever is
writing to the terminal) and processed (by the terminal). cat a large text file to a terminal
and watch it scroll by; the terminal tries to show all of the characters as fast as possible.

With a block terminal, entire screenfuls of information are sent at a time, in a sin-
gle unit. Conversely when typing, information is not sent to the computer to which the
terminal is connected immediately, but only when some particular action happens, like
pressing Enter to submit a form being filled in, or pressing a function key. This reduces
load on the computer to which the terminal is connected, and means that the respon-
siveness of the UI is not dependent on the round trip time to the computer with every
single keypress. If you have ever had to connect via SSH to a computer on the other
side of the world, you have probably noticed the delay between typing a single character
of a command and seeing it appear. With a block terminal, this unavoidable round trip
delay is suffered less frequently, such as after having written out an entire command, at
the time it is submitted.

10 CHAPTER 1. WHAT IS IBM I?

Block terminals can be compared to modern business web applications. Both wait
until a form on screen has been fully filled out to contact the server, so their UI can be
adequately responsive for such interactive applications. Whereas modern character ter-
minals might mainly be used by systems administrators and developers, block terminals
were intended for a wider audience — ordinary persons without high levels of skill in IT
who needed to interface with large, expensive business computers.4 As such, the 5250
block terminal was the primary interface to IBM i at the outset. A single IBM i system
might have a large number of 5250 terminals attached to it, serving many employees
simultaneously; the 5250 is well suited to displaying pages of (monospaced) informa-
tion, and forms for performing database searches or data entry. The web is, and was
always intended as, a hypertext platform for the publishing of information, but rapidly
became co-opted as a sort of more modern and capable block terminal system; the
modern enterprise web application can be thought of as a direct successor of this kind
of architecture in which terminals were used by lay persons to access a single, central
computer. The increased sophistication of block terminals relative to character terminals
is a product of these requirements, and modern web applications appear to have come
to similar decisions, driven by similar requirements.

To connect to an IBM i system, you will need a 5250-compatible terminal emulator.
Such emulators are of course available from IBM, but if you are not in possession of
such software, one option in a pinch is the free tn5250 program for POSIX systems.
(This program actually runs in a character terminal, so it can effectively be thought of as
an adapter from the 5250 block terminal to a DEC VT-style character terminal.)

Just as the web environment has been evolved and augmented with many new abil-
ities over the years, the 5250 (and for that matter DEC’s character terminals) also have
stories to tell of accumulated features over the years. For example, the 5250 protocol
at one point had the ability to display images added to it. However, support for many
of these now obscure and little known capabilities tends to be varying, at least in third
party terminal emulators.

1.4 Anatomy of an IBM i System

Table 1.1 gives a guide to some common IBM terminology; you’ll need it.
The “Licenced Internal Code” terminology deserves discussion in itself. IBM used to

call this “microcode” and now calls it “Licenced Internal Code” (LIC). In particular, IBM i
is formed of two installable components, one of which must be installed after the other:

4Anyone familiar with the history of computing will be aware of the “personal computer” revolution —
itself a cultural insurgency against a then predominant IBM culture of having one big, expensive computer
(“the” computer), with terminals simply serving as dumb access points to this one computer. If you consider
that such terminals must contain microprocessors to implement the various fancy functionality that block
terminals require, this arguably constituted a case of artificial dumbness; were these terminals not simply
deliberately and obstinately single-function computers? The PC revolution was surely inevitable, being as
much dictated by technology as a humanist vision. Our modern “terminals” are rich with capability beyond
the wildest dreams of our forebears.

1.5. THE POWERPC AS ARCHITECTURAL EXTENSIONS IN DETAIL 11

IBM Term Common meaning
IPL (Initial Program Load) Booting.
DASD (Direct Attach Storage Device) A hard disk.
Load Source The DASD from which a system IPLs.
HLIC (Horizontal Licensed Internal Code) Microcode.
VLIC (Vertical Licensed Internal Code) Firmware.
PLIC (Platform Licensed Internal Code) Firmware — the kernel of PHYP.
PHYP (Power Hypervisor) PowerVM.
LPAR (Logical Partition) A virtual machine.
SLIC (System Licensed Internal Code) The IBM i kernel.
OS/400 (aka XPF) The IBM i userspace.
PTF (Program Temporary Fix) OS patches, hotfixes, etc.

Table 1.1: Common IBM terminology

System LIC (SLIC) and OS/400. Although IBM used to refer to LIC as “microcode”,
IBM’s definition of “microcode” is extremely broad, including both what people would
ordinarily understand as microcode (microarchitectural code controlling the decoding of
CPU instructions, now referred to by IBM as “Horizontal LIC”), but also what most people
would call firmware (“Vertical LIC”), a hypervisor kernel (“Platform LIC”, forming the core
of PowerVM) and, in the case of IBM i, the OS kernel (“System LIC”).

Once upon a time, IBM i ran only on machines designed specifically for it, and had
the whole machine to itself. Eventually, IBM elected to unify IBM i and their Power
Systems servers, and now IBM Power Systems servers are the only supported way
to run IBM i. These servers have a hypervisor, PowerVM (aka PHYP), built into their
firmware. Any OS installed on these servers, whether it’s IBM i, Linux or AIX, always
runs under PowerVM. Multiple “LPARs” (IBM-speak for virtual machines) can be created,
allowing multiple instances of IBM i, Linux and AIX or any combination thereof to all run
simultaneously on the same hardware. Modern IBM i is designed to run exclusively
under PowerVM and is quite closely coupled with it.

Don’t expect IBM to spell out in much clarity what SLIC exactly is; they’re rather coy
about it. Instead, I will: it is the kernel of IBM i — it handles system calls, generates the
machine code, and also contains the integrated DB2/400 SQL database.5

1.5 The PowerPC AS Architectural Extensions In Detail

This section is partly an adaptation of the article “The PowerPC AS Tagged Memory
Extensions”, available at https://www.devever.net/~hl/ppcas.

5Yes, IBM i is an SQL database engine running in kernel mode.

https://www.devever.net/~hl/ppcas

12 CHAPTER 1. WHAT IS IBM I?

1.5.1 Theory

As previously mentioned, the validity of pointers in memory is tracked using a tagged
memory system, in which a single bit of metadata is stored for every word of ordinary
RAM.

A pointer to memory in IBM i is 16 bytes long6 — and is only considered valid if the
metadata bits for each of its four words is are all set. The CPU automatically clears the
metadata bit if one of these words is modified arbitrarily. The machine code generated
by the kernel uses a special CPU instruction to set these tag bits, but it only generates
that instruction to “bless” pointers which have come from a source considered legitimate
by the kernel.

This metadata system is an architectural extension of the Power ISA on which mod-
ern IBM i runs. It’s important to emphasise, though, that these architectural extensions
provide a way to set and retrieve one bit of metadata for every word in memory, but don’t
really implement any security logic around it. The CPU won’t fault if trying to derefer-
ence an untagged pointer; the trusted translator must emit instructions, as part of the
machine code it generates, to check if a pointer is untagged and raise an exception if
this is the case. If an attacker could generate arbitrary machine code, the security of the
system would collapse. These architectural extensions should be thought of simply as
a means to enhance the performance of the code generated by the trusted translator; it
would be possible to implement such a trusted translator on a machine without these ar-
chitectural extensions and without changing the semantics of the programs it executes,
but performance would be poorer.

Since there is one tag bit for every 4-byte word of memory in the entire system, you
might wonder where exactly these tag bits are stored. Originally, AS/400s had special
memory modules which were widened to add more memory to store the tags. Modern
IBM Power servers, however, take industry-standard ECC DIMMs. Although it’s not
officially known, it’s a foregone conclusion at this point that IBM is storing these tag bits
in the ECC syndrome. Clever application of information theory should allow the error-
correcting properties of the ECC syndrome to be preserved while also allowing one extra
bit of information to be stored.

(In information theory, a distinction must be made between an ordinary error-correcting
code and an erasure code. An ordinary error-correcting code, as used in ECC RAM,
is designed to correct errant bit flips no matter where they may occur inside an ECC-
protected word, as it is not known when a memory word is loaded which bit of it has
been corrupted, if any. An erasure code is a similar construct to a conventional error-
correcting code but recovers a small number of unknown bits given a larger number of
known bits; that is to say, you must know which bit has been erased. This is a more
favourable condition; an erasure code can recover more erased bits per known bit than
an error correcting code can which does not know which of the bits have been erased.
Most likely IBM recovers the tag bit on loads using an erasure code or similar construct;

6Since IBM i uses a 64-bit virtual address space, only half of this is needed for the pointer. The other
half is used to store a few bits of metadata about the pointer but is otherwise largely unused. This might
be considered extreme futureproofing on the part of IBM.

1.5. THE POWERPC AS ARCHITECTURAL EXTENSIONS IN DETAIL 13

in all loads the tag bit has been “erased” (in reality, was never stored in the first place)
and must be recovered. Since it is always known which bit was erased (the tag bit),
my (very rough) understanding of information theory leads me to believe they would
just about be able to pack this erased bit into the ECC syndrome without increasing
the amount of space allocated for ECC syndrome in industry-standard ECC DIMMs, yet
also without reducing the number of bit errors which can be corrected or detected in the
memory words themselves.

Aside from erasure codes, IBM may also be able to pack more information into the
ECC syndrome by using larger ECC block sizes.

An interesting consequence of this is that any architecture could theoretically add
support for tagged memory without increasing hardware costs, so long as it was eco-
nomically feasible to require use of ECC RAM. This is quite relevant given modern
tagged memory research projects such as CHERI or LowRISC.)

1.5.2 Practice

Note: This section assumes familiarity with the publically-documented Power ISA.
PowerPC AS refers to the architectural extensions to the Power ISA which are made

to support PowerPC-based AS/400 and which are still used today to support IBM i.
These architectural extensions were never documented by IBM and are implemented
only by IBM POWER CPUs (POWER5, POWER6, POWER7, POWER8, POWER9,
etc.).

IBM has never published information about these extensions, so they remain largely
mysterious to most people. In reality though, these extensions aren’t nearly as secret
as IBM thinks; if you add together the fragments of publically available information, a
complete picture of the extensions is available, which is described below:

The tags. The architecture provides for one tag bit for every 16 bytes of (aligned)
memory.

Strictly speaking, a hardware implementation is free to implement either one tag bit
for every 16 bytes, one tag bit for every 8 bytes, or even one tag bit for every 4, 2 or 1
bytes, so long as it has some way of storing this information (ECC syndrome permitting).
However, the ISA extensions only allow the logical AND of all the tag bits on a 128-bit
quadword to be retrieved, which means it is opaque to the architecture whether the
hardware is actually storing one tag bit per 16, 8, 4, 2 or 1 bytes.

This means, for example, that one generation of hardware implementing *PowerPC
AS* could store one tag bit for every 4 bytes, and a subsequent generation could store
one tag bit for every 16 bytes, and a generation after that could store one tag bit for every
8 bytes, with no software-visible changes; the only information about tag bits that can
be retrieved via the *PowerPC AS* extensions is whether *all* of the bits on an aligned
16-byte quadword are set.

Because of this, it is unknown to me whether current or previous IBM hardware stores
a tag bit per 16, 8, or 4 bytes, since it is opaque to software. However, there is some

14 CHAPTER 1. WHAT IS IBM I?

evidence to suggest early implementations of *PowerPC AS* used one tag bit per 8
bytes. It’s also known that very early CISC machines used one tag bit per 4 bytes.

In general, performing an arbitrary store to an aligned 128-bit quadword or any part
of it (that is, a doubleword, word, halfword or byte comprising any part of it) will clear the
tag bits. Only specially performed stores set the tag bits.

The tagged memory extensions are used to anoint pointers as being legitimate, al-
lowing pointer forgery to be detected, forming the basis of a primitive capability-based
architecture.

Since writing to any part of a 16-byte pointer clears its tag bits (for example, changing
the third byte with a “store byte” instruction), changing the pointer in any way clears its
tag bits, de-anointing it as a legitimate pointer.

Registers. A processor implementing *PowerPC AS* runs in either *Tags Inactive* (TI)
or *Tags Active* (TA) mode. In *Tags Inactive*, the processor functions like a completely
normal Power ISA implementation.

Tags Active mode is enabled by setting bit MSR.TA (bit 1 of the MSR in IBM bit num-
bering; i.e., 1<<62).7

The other architectural register which is extended is XER. Bit 43 of XER (again, in
IBM bit numbering), called TAG, holds the tag bit for a 128-bit quadword. When a 128-bit
quadword is loaded, the tag bit for that quadword is placed in XER[43]. When a 128-bit
quadword is stored, the tag bit(s) for that memory are set from XER[43].

Behaviour in Tags Active mode. Setting TA mode changes the behaviour of the pro-
cessor in two fundamental ways:

Firstly, it allowsw you to use the special PowerPC AS instructions described below
()which are otherwise considered illegal instructions).

Secondly, it changes how the processor calculates displacements. For example,
consider the “Load Word” instruction:

lw rX, disp(rY)

which loads a 32-bit word from [rY]+disp and places the result in rX. When TA
mode is enabled, if the addition of disp and the contents of rY would cause a different
aligned 16 MiB region of memory to be addressed from that addressed by rY alone, an
exception occurs (unless the 16 most significant bits of rY are zero, in which case this
overflow check is bypassed). The purpose of this is discussed subsequently.

The MMU also works a bit differently in TA mode, so that SLS addresses can be
treated directly as VAs rather than EAs, bypassing the SLB.

7All bit numbering herein is in IBM bit notation; i.e., bit 0 is the most significant bit. Bit ranges (X:Y) are
inclusive of bits X and Y.

1.5. THE POWERPC AS ARCHITECTURAL EXTENSIONS IN DETAIL 15

Instructions. The known instructions which become available in TA mode are as fol-
lows:

LQ Actually a part of the normal ISA nowadays. However, in TA mode it is extended to
load the tag bit for the quadword into XER[43]. The instruction is also extended
with a third operand (in bits 28:31 inclusive), an immediate, which appears to mask
the loaded value in some way.

STQ Also part of the normal ISA nowadays. In TA mode it stores the tag bit from the
current value of XER[43].

SETTAG This sets XER[43] to 1. It is generally used immediately before a store when it
is desired to anoint a quadword as being a valid pointer. Encoding: No operands,
encodes as 0x7C0103E6.

TXER “Trap on XER”. This is actually a general purpose instruction which appears to
be usable to trap on any XER bit, however it is only available in TA mode. It is
generally used to ensure the tag bit is set immediately after an LQ instruction.
Encoding: Major opcode 31, minor opcode 36 (placed in bits 25:30). Three imme-
diate operands in 6:10, 11:20 and 21:24.

SELII, SELIR, SELRI, SELRR These are like a ternary operator predicated on a spec-
ified bit in XER. II means both operands are immediates, IR means one is an
immediate and one is a register, etc. One operand is selected if the specified bit in
XER is set, otherwise the other operand is selected. Variants ending in a . update
the condition register. Encoding: Major opcode 30, minor opcode 24 (selii), 25
(selii.), 26 (selir), 27 (selir.), 28(selri), 29 (selri.), 30 (selrr), 31 (selrr.)
in bits 27:31. Destination register in 11:15, first and second operands (register or
immediate depending on mnemonic) in 6:10 and 16:20, final immediate in 21:24.

LTPTR This wasn’t part of the original PowerPC AS extensions and was a late addition
to the family added some generations later to improve performance. It functions
like LQ, except the loaded value is zero if the tag bits weren’t set. This instruction
is documented in a 2009 patent8, which includes an encoding diagram in the style
of the Power ISA manual (but note that the bit offsets in the diagram are very
patently wrong; this seems to be a typo. You can easily figure out the correct ones
by looking at the encoding conventions of other Power ISA instructions, however).

SCV System call vectored. I won’t bother to describe this because curiously, this was
declassified in version 3.0 (POWER9) of the Power ISA specification and now
appears in the publically available ISA manual. This is somewhat strange because
this instruction has traditionally only been used internally by IBM i, and the way that
it works is very specific to how IBM i is laid out in memory. See the ISA specification
to see what I mean.

8US20090198967A1

16 CHAPTER 1. WHAT IS IBM I?

Extensions provide no security. It is vital to note that nothing about these ISA exten-
sions provides any kind of security invariant against a party which can generate arbitrary
machine code, even if only in unprivileged mode. The tagged memory extensions don’t
stop you from doing anything. As such, they can principally be viewed as providing a
performance enhancement for the IBM i operating system, which uses these instructions
to keep track of pointer validity. It is the IBM i OS which enforces security invariants, for
example by always following every pointer LQ with a TXER.

This works because in IBM i, all machine code executed by the system is generated
by the kernel translating from a virtual intermediate language. Compare with JITing
JavaScript engines, the Java VM, Singularity, Nebulet, etc. In other words, the PowerPC
AS extensions can be viewed as a hardware accelerator for a trusted translator.

Extensions are extremely specific to IBM i. I noted above that when enabling TA
mode, the register-displacement addition will trap if it causes overflow into a different 16
MiB aligned segment of memory. This is because IBM i likes to allocate memory in 16
MiB “segments”, and this enables the trusted translator to generate code dereferencing
segment pointers offset by an (untrusted) user-provided offset without having to check
on every single displacement addition whether a segment overflow would occur. In other
words, the hardware is hardcoded to the precise design of IBM i. The hardware cannot,
to my knowledge, be reconfigured to trap on a different carry bit/segment size. As a
special extension which is even more specific to IBM i, the 16 MiB overflow check is
disabled for addresses below 256 TiB (i.e., having the 16 most significant bits as zero);
this is used to support Teraspaces.9

Likewise, you need only consider the calling convention used by the SVC instruction
now publically documented in v3.0 of the ISA manual to see how specific some of these
instructions are to the precise nature of IBM i. It is unlikely any other OS could make
constructive use of these ISA extensions, aside from maybe the simple ability to store
one tag bit per 128-bit quadword, which could be useful.

1.6 The Machine Interface

The Machine Interface (MI) refers to the bytecode which the IBM i kernel (SLIC) accepts
from userspace and translates into machine code. All machine code executed on the
system besides SLIC itself is generated via translation from MI bytecode, and this is the
only way to write programs to run on the OS.

IBM sometimes refers to this design as the Technology-Independent Machine Inter-
face (TIMI). A consequence of this design is that all IBM i programs are fully architecture-

9Teraspaces are a feature of IBM i allowing a process to receive an allocation of private virtual memory
similar to as is done on conventional UNIX-like operating systems. The first 256 TiB of virtual memory
are reserved for this process-specific use. This region does not form part of the SLS and is not mapped
globally into every process on the system; instead different processes may have different memory mapped
into the same region. Pointers into the Teraspace region are thus not portable between processes unlike
SLS pointers.

1.6. THE MACHINE INTERFACE 17

independent and a transition from one machine architecture to another does not require
programs to be recompiled. Such a transition has already occurred once, from the CISC
AS/400 era to the RISC PowerPC era.

In fact, the instruction set of the CISC CPUs of the AS/400 was never even publically
documented by IBM and the instruction set of these CPUs remains largely unknown.
This is a cogent demonstration that it is unnecessary for IBM i developers to know any-
thing about the machine architecture.

The trusted translator in the kernel (SLIC) which translates MI bytecode into Power
ISA machine code is internally known as Voxlator. It is possible to write programs for
IBM i in MI assembly directly10, which is the lowest-level way of programming on IBM i
available; however, IBM discourages this and prefers people to use one of the high-level
compilers it provides (RPG, COBOL, C, etc.), which all generate MI and hand it off to
the kernel for translation.

1.6.1 Object Types

The world exposed by the MI bytecode language is a high-level, type-safe, object-
oriented world. Rather than merely exposing low-level computation concepts like in-
tegers and memory addresses, the MI “interface” exposed by the kernel provides op-
erations to manipulate objects of various types defined by the kernel, in addition to in-
structions for basic computation.

The following is a non-exhaustive list of the object types understood by the kernel:

• Programs (containers of MI bytecode);

• Contexts (the kernel-level basis of IBM i “libraries” and comparable to directories
on most OSes);

• Spaces (essentially, a persistent or temporary memory allocation);

• Indexes;

• Access Groups and Authorization Lists;

• User Profiles;

• Machine Contexts.

The userspace (“OS/400”, aka XPF) builds on these object types to provide higher-
level object types. Many XPF object types are constructed from numerous MI objects.

10You can find a list of MI instructions and their documentation here: https://www.ibm.com/support/
knowledgecenter/ssw_ibm_i_73/rzatk/inst.htm

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_73/rzatk/inst.htm
https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_73/rzatk/inst.htm

18 CHAPTER 1. WHAT IS IBM I?

Chapter 2

Using IBM i

2.1 Installation and IPL

The process of installing IBM i on a modern IBM Power server essentially requires three
steps:

1. Create an LPAR in PowerVM configured to run IBM i.

2. Install SLIC into that LPAR.

3. Install OS/400 into that LPAR.

When compared to installing a POSIX operating system, installing SLIC is analagous
to initializing a filesystem and copying the kernel onto it, but not any of the userspace
utilities such as cat, ls, etc. The “load source” (the disk which IBM i boots from, that is,
the system disk) is initialised and the SLIC code is copied onto it. It’s impossible to make
any use of IBM i without also installing OS/400, however, and having installed SLIC, the
system will prompt you to install OS/400. This is essentially the userspace of IBM i, and
is just as essential as the contents of /bin and /usr/bin are to a UNIX system.

There are a few things to note about IPLing (that is, booting) an IBM i system that
differ from more mainstream systems you may be used to. When performing an IPL,
you must select an “IPL type” and an “IPL mode”. The IPL type is one of the following:

Type A Boots the “A-side”, which is IBM i without any of the PTFs (patches) applied.
This is essentially a “golden side” kernel which remains pristine.

Type B Boots the “B-side”, which is IBM i with PTFs applied. This is the most common
IPL type; Type A would only used when IPLing for the first time after installation,
or when installation of a PTF has caused a serious issue and needs to be rolled
back.

Type C Used to boot into special diagnostic and recovery tools. Can be thought of as
a recovery mode, or emergency debugging mode, and not generally used unless
one is specifically advised to.

19

20 CHAPTER 2. USING IBM I

Type D Used to install IBM i for the first time; boots from optical or tape media instead
of a load source DASD. In other words, this is equivalent to “booting from DVD” on
a garden-variety x86 server.

While the “IPL type” determines what is booted, the “IPL mode” determines in what
style it is booted. À “normal” IPL boots the system automatically without asking ques-
tions, whereas a “manual” IPL is a verbose and interactive process to boot the system.
A normal IPL is usually desirable, but a manual IPL must be performed in some circum-
stances. Type C and D IPLs must always be manual.

Once upon a time, the IPL type and mode were set via a physical front panel on the
front of an IBM i machine. The “IPL mode” would generally be set via a keyswitch, and
the “IPL type” could be set via buttons under a small LCD. This LCD would also show
an eight-character hex code known as a “System Reference Code” (SRC); this code
indicates what the system is currently doing while it is IPLing, and the condition of the
system once it has finished IPL. These codes can be looked up in IBM documentation.

Nowadays, with IBM i only existing in an LPAR of the PowerVM hypervisor, the IPL
type and mode are set as part of LPAR configuration; SRCs are available in the same
manner.

2.2 Using a 5250

To be brief:

• A 5250 traditionally has 24 function keys. Since modern keyboards don’t have 24
function keys, all 5250 terminal emulators map Shift+F1 as F13, Shift+F2 as F14,
etc.

• PgUp/PgDn and Tab are used a lot. If you don’t know what you can interact with
on a given screen, press Tab.

• The meaning of function keys is generally highly standardised, so that they always
mean the same thing in no matter what context:

F1 displays help.
F3 exits whatever program you are currently in. It’s similar to F12, but more major.
F4 is used to display what values are valid for the field the cursor is currently in (if

supported by the field).
At the command prompt, you can press F4 to get a menu of all commands
supported by the system.
If you type a command at the prompt, you can then press F4 to get a graphical
form showing its arguments. This is useful if you know a command but not
exactly what arguments it wants.

2.2. USING A 5250 21

F9 recalls previous typed lines at the command prompt, and is equivalent to press-
ing Up on many other systems.

F12 cancels; goes back a screen.

• Fields (that you can type text into) are almost always underlined. You can navigate
between them with Tab.

• Pressing Enter will generally “submit” the current screen. (If you don’t want to
proceed with some action, press F12 or F3 instead.)

• Don’t underestimate the help system; it’s surprisingly effective. If you position the
cursor over a specific area of the screen before pressing F1, the help it prints may
be context-aware. Underlined terms in displayed help are hyperlinks; move the
cursor over them and press Enter to follow them.

• If you try and type in an area of the screen that isn’t a field, the terminal will get
angry at you. If this happens, just press Tab to move back to a field.

• First impressions may lead you to believe that IBM i is a purely menu-driven OS. In
fact, most menus have a command line at the bottom, and allow commands to be
entered as well as menu option numbers. For guidance on available commands,
press F4 at the command line. (In fact, seasoned IBM i users can set an option to
disable the menus entirely, leaving more room for the command line.)

• When II or, for some terminals, X is shown on the bottom row of the screen, input
is inhibited. This generally occurs when the system is processing some request;
just wait.

• Pressing SysRq shows a special command line at the bottom of the screen which
can be used to submit special kinds of command to the system, even when the
system is processing. Press just Enter at this command line to show a menu of
the available options. Importantly, this menu can be used even when II is shown.
You can think of SysRq as similar to Ctrl+C on a POSIX system.

	What is IBM i?
	The Strangest Operating System In The World
	Back To The Legacy
	IBM Block Terminals
	Anatomy of an IBM i System
	The PowerPC AS Architectural Extensions In Detail
	Theory
	Practice

	The Machine Interface
	Object Types

	Using IBM i
	Installation and IPL
	Using a 5250

