
Adventures in Reverse Engineering Broadcom NIC Firmware
Unlocking servers with 100% open source firmware

Hugo Landau

2023-12-27 37C3

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 1 / 54

Project Ortega: Motivations

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 2 / 54

How to become an activist at age 10

When I was 10 years old, I heard the soon-to-be-released Windows XP would have a
“feature” called “product activation”

I had never heard of FSF, open source, etc. or even used the internet, but I intuitively knew
this was wrong and boycotted Windows XP

Why? Because I intuitively knew that your computer should be on your side — not anyone
else’s

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 3 / 54

Your computer should be on your side

. . . but is it?

No
Product activation
DRM
Locked bootloaders
Tivoisation
Your smartphone is controlled by Apple/Google/$VENDOR whether or not you want it
Antifeatures: Designed to benefit the manufacturer’s interests over yours

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 4 / 54

Beyond just computers

Now anything with a chip might be used to try and control you
Companies have figured out they can use software to control how a product is used after
they sell it

▶ Technological “workaround” to the first sale principle
Printers, CNC machines, cars, tractors, you name it. . . even trains

▶ e.g. preventing repair or use of third party components
▶ Real examples exist for all of these, and countless others
▶ 37C3: Breaking “DRM” in Polish trains (today, 11pm)

References:
▶ “The Coming War on General-Purpose Computation” (Cory Doctorow, 28C3)

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 5 / 54

https://boingboing.net/2011/12/27/the-coming-war-on-general-purp.html

The principle of owner control

A simple principle must be defended:

All hardware and software must be designed to put the interests of its owner first, over any
vendor, any third party, any government
Owner control: the diametrical opposite of DRM

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 6 / 54

Making owner control a reality

All of the software and firmware on your machine should be yours to audit, inspect, and
change to your needs
Ergo: All of the firmware on your machine must be open source

Antifeatures are largely impossible under these conditions
▶ If you don’t like a feature, you can just remove it
▶ Ability to impose antifeatures is a big motivation to keep firmware proprietary
▶ “Open source DRM” is an inherently nonsensical concept

If a vendor doesn’t want to open something because then the user could remove feature X
from it, that feature is an antifeature by definition

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 7 / 54

Open source firmware and security

Open source firmware isn’t just about owner control
Need to be able to audit firmware to trust it

▶ Potential for backdoors is immense
▶ Or just zero-days in shoddy vendor code

Increasing concern about supply-chain attacks
▶ “This firmware is signed by $VENDOR, so it’s safe” is not a good security model
▶ Reproducible builds help mitigate backdoors inserted into compiled code

⋆ “Trusting trust” attacks
⋆ Open source is a requirement for this

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 8 / 54

x86 prevents owner control

Both Intel and AMD have signed firmware blobs which can’t be replaced
▶ Used for DRM and other functions
▶ Fully open source firmware for x86 is now impossible

Many SBCs have open firmware, but they’re not fast
Where can we get a desktop or server with open firmware?

▶ IBM makes fast server CPUs (POWER9)
▶ Amazingly, they agreed to open source all the firmware

Talos II: EATX motherboard, POWER9 CPU
▶ 99% open firmware
▶ But the Broadcom Ethernet controller has a firmware blob
▶ Let’s reverse the firmware and get rid of it!

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 9 / 54

Device overview

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 10 / 54

Broadcom BCM5719 Ethernet Controller
Quad-port PCIe Gigabit Ethernet Controller

▶ 13th Generation chip descending from the Tigon line of NICs released by Alteon Networks in
1997

▶ These chips have a long history — and the IP somehow ended up with Broadcom

Has special features oriented to server applications
The BCM5719 supports NC-SI, a standard allowing a server BMC to share the host’s
network connection, piggybacking on the host’s Ethernet ports

▶ Network Controller — Sideband Interface
▶ If you’ve used a server where you can access the host and the BMC over the same port, this is

how it works

Modern servers have a Baseboard Management Controller (BMC), a SoC implementing
remote management features (IPMI, Serial over LAN, etc.)

▶ Yes, it usually runs Linux
It needs a network connection

▶ Using a separate port can be wasteful
▶ NC-SI allows it to share the host’s ports

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 11 / 54

Broadcom BCM5719 Ethernet Controller Block Diagram
4-port PCIe Gigabit Ethernet controller

▶ PCIe on one side, Gigabit Ethernet on the other

MIPS CPU PCIe Func 0Port 0
MIPS CPU PCIe Func 1Port 1
MIPS CPU PCIe Func 2Port 2
MIPS CPU PCIe Func 3Port 3

Ethernet To Host

APE CPU
???

SPI Flash
Interface To Flash

MIPS CPU
MIPS CPU
MIPS CPU
MIPS CPU

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 12 / 54

Broadcom BCM5719 Ethernet Controller Block Diagram
NC-SI lets server BMC (IPMI) piggyback on host network connection

▶ Oriented towards server use

MIPS CPU PCIe Func 0Port 0
MIPS CPU PCIe Func 1Port 1
MIPS CPU PCIe Func 2Port 2
MIPS CPU PCIe Func 3Port 3

Ethernet To Host

APE CPU
???

SPI Flash
Interface To Flash

MIPS CPU
MIPS CPU
MIPS CPU
MIPS CPU

NC-SI RMII
InterfaceTo BMC

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 12 / 54

Broadcom BCM5719 Ethernet Controller Block Diagram
NC-SI lets server BMC (IPMI) piggyback on host network connection

▶ Oriented towards server use

MIPS CPU PCIe Func 0Port 0
MIPS CPU PCIe Func 1Port 1
MIPS CPU PCIe Func 2Port 2
MIPS CPU PCIe Func 3Port 3

Ethernet To Host

APE CPU
???

SPI Flash
Interface To Flash

MIPS CPU
MIPS CPU
MIPS CPU
MIPS CPU

NC-SI RMII
InterfaceTo BMC

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 12 / 54

Recon: Examining the flash layout

Header
Image Pointers
Configuration,
MAC Addrs

Stage 1 MIPS FW
Stage 2 MIPS FW
PXE Option ROM
(x86 legacy BIOS)
PXE Option ROM
(x86 legacy BIOS)
PXE Option ROM

(x86-64 UEFI BIOS)
PXE Option ROM

(x86-64 UEFI BIOS)
Extended

Image Pointers

Config
Management Tool

Config
Management Tool

APE Code
(NC-SI)

iSCSI Boot CodeiSCSI Boot Code
iSCSI config
for each port
iSCSI config
for each port

Extended VPDExtended VPD
(free space)(free space)

We don’t care
about... most of
this, actually!

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 13 / 54

Recon: Examining the flash layout

Header
Image Pointers
Configuration,
MAC Addrs

Stage 1 MIPS FW
Stage 2 MIPS FW
PXE Option ROM
(x86 legacy BIOS)
PXE Option ROM
(x86 legacy BIOS)
PXE Option ROM

(x86-64 UEFI BIOS)
PXE Option ROM

(x86-64 UEFI BIOS)
Extended

Image Pointers

Config
Management Tool

Config
Management Tool

APE Code
(NC-SI)

iSCSI Boot CodeiSCSI Boot Code
iSCSI config
for each port
iSCSI config
for each port

Extended VPDExtended VPD
(free space)(free space)

We don’t care
about... most of
this, actually!

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 13 / 54

MIPS

Each port has an ancient MIPS core — roughly MIPS III, no hardware MUL/DIV
The firmware for these was fully reversed, but these cores turn out to be almost vestigial

▶ Originally the MIPS cores handled dataflow, two cores per port (one for RX, one for TX)
▶ Then dataflow was moved into hardware, and only one core was kept
▶ Now these cores are left with almost nothing to do

What do these cores still do?
▶ Device Init: Loading MAC addresses from flash, setting device and Ethernet PHY registers
▶ Even a lot of this init code turns out not to be enabled in practice and is vestigial

After initialization, the MIPS core for each port enters an infinite loop checking if
housekeeping tasks need to be performed

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 14 / 54

MIPS: What does it actually do?
What housekeeping tasks? Well. . .

for (;;) {
S2MainLoop_Init1(&init); // Doesn’t actually do anything
S2ConfigureAPE(); // Almost never does anything

if (GetReg(REG_STATUS) & REG_STATUS__VMAIN_POWER_STATUS) {
S2VPDAttentionCheck(); // Is the host asking for my serial number? No?
continue; // Time to check again!

}
...

After initialization, if the host is on, each port has an entire core which spends its entire life
looping checking if the host is trying to request its serial number!

These cores implement random dregs of functionality nobody has yet bothered to move
elsewhere

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 15 / 54

Your princess is in another castle

The MIPS cores do some device initialisation, but are otherwise largely unused

There is a mysterious “APE” block on the device
▶ Is it a core? Is it something else? Broadcom doesn’t say
▶ There is an “APE Code” image on the flash
▶ There are references to “NCSI” in APE-related code

Presumably, the APE is some core which implements NC-SI

We need to reverse engineer the APE code image and figure out how it works if we want to
have working NC-SI

However, the APE image is compressed with some unknown algorithm
APE memory space isn’t accessible from PCIe or MIPS cores either
How do we get in to this thing?

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 16 / 54

How I ended up reverse engineering x86 real mode decompression code

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 17 / 54

Two problems

Problem 1

I want to disassemble the APE code
But the APE code is compressed
It doesn’t appear to be any common or recognisable compression algorithm

▶ . . . although the number of partial text strings in the compressed image suggests it’s quite a
crappy algorithm

Problem 2

I want to gain access to the APE memory space
But it’s not mapped into PCIe or accessible indirectly
It can only be accessed by the APE core
Only way to gain execution on the APE core is by providing a valid firmware image

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 18 / 54

Two problems: a conundrum

I want access to the APE address space, but it is not mapped into the PCIe
address space, so direct access is not possible
The only way to get access to the APE’s address space is to provide a
well-formed firmware image and have the APE load it
But formulating such an image would require me to understand the
compression algorithm used by the APE boot ROM
...which would require me to dump the APE boot ROM...
...which would require me to get access to the APE’s address space...
...which would require me to gain execution on the APE...
...which would require me to provide a well formed firmware image.

▶ Circular dependency

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 19 / 54

Problem: Decompression

We need to decompress the APE image in order to study it
We don’t have the decompression code

▶ The boot ROM for the APE must have it
▶ But we can’t seem to find any way into the APE’s memory space
▶ Circular dependency

Let’s take a break and look somewhere completely different

The SPI flash also contains things like PCI Option ROM images
▶ PXE Boot support, config menu support, etc.
▶ These images look like they are compressed with a suspiciously similar algorithm
▶ Since they are Option ROMs they must be self-decompressing
▶ They must contain the decompression code!

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 20 / 54

PCI Option ROMs

There are two PXE images:
▶ PC BIOS (x86 real mode code, oh my. . .)
▶ UEFI BIOS (nice, modern, x64 protected mode code)

Obviously I’d rather reverse the latter

However,

The UEFI standard specifies its own standard UEFI compression algorithm

The UEFI PXE option ROM is compressed with this, not the APE compression algorithm

Meaning, the only specimen for the decompression code I’m looking for is in the x86 real
mode PC BIOS image

▶ . . . oh no

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 21 / 54

Reversing x86 real mode code

Putting it shortly: not fun
Decompilers? Forget it
Segment registers are constantly being changed and make everything confusing to follow

mov al, es:[bx]

Decompression code is always hairy as it is, but trying to “eyeball” this code proved
unpleasant and impossible

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 22 / 54

Reversing x86 real mode code

Segment registers are constantly being changed and make everything confusing to follow
Consider a simple load:

mov al, es:[bx]

Memory address is determined by segment register es and general register bx
bx is 16 bits so it can’t address enough memory
. . . so the compiler Broadcom uses to generate code which constantly changes the value of
es as needed to address different regions of memory
This makes following the code very confusing
Imagine debugging protected mode code if the memory mappings kept changing

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 23 / 54

Reversing x86 real mode code

Ad-hoc reversing of the decompression code was horrible, but nonetheless attempted

The code seemed to work at first to decompress the APE firmware for the first few
instructions, but proved to have bugs which corrupted code subtly — $!~“@!

▶ Explained a lot of baffling disassembler output

Needed a way of reversing this code which can’t introduce bugs
▶ Otherwise, corruption which isn’t immediately obvious may frustrate reversing and cause wild

goose chases down the line
▶ Reversing decompression algorithms is annoying enough without it being real mode

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 24 / 54

A methodical approach

Idea: Construct an “x86 real mode emulator” in C
▶ “Emulator” is too big a word

Every line of x86 real mode assembly was turned into a C comment

// mov es, [bp+var_4]
// mov bx, si
// inc si
// mov al, es:[bx]

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 25 / 54

The x86 real mode “emulator”

An “emulation” environment for real mode code was then built in C
▶ . . . I say “emulation”

static uint16_t _segES; // just a global variable!
reg_t eax, ebx, ecx, edx, esi, edi; // x86 registers are globals!
static inline void SetES(uint16_t seg) {

_segES = seg;
}
static inline uint8_t Load8ES(uint16_t off) { // ES-relative load

return FarptrDeref8(FarptrFromParts(_segES, off));
}

▶ Each comment assembly line then had equivalent C for this “emulator” placed under it

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 26 / 54

The x86 real mode “emulator”
// mov es, [bp+var_4]
SetES(var4);
// mov bx, si
ebx.x = esi.x;
// inc si
++esi.x;
// mov al, es:[bx]
eax.l = Load8ES(ebx.x);

Every single line of assembly is a C comment with a trivial and obviously correct translation
into “x86-C” below it
Can be eyeballed several times to check the correspondence is correct
No structured control flow — gotos only
Successfully compiles as a Linux binary, executes, and fully decompresses the APE
firmware!

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 27 / 54

“Raising” to real C

The output of the “x86-C” decompression program was recorded

The program was then modified to “raise” the “x86-C” code to more readable C
▶ goto → if/for/while, etc.

After each extremely small change, the decompressor was re-executed to confirm the
output had not changed

▶ Mistakes in “raising” were immediately caught

Eventually via this methodical approach, all use of “goto” or the x86 “emulator” was
dropped
Result: bug-free description of the decompression algorithm in clean, readable C

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 28 / 54

The Decompression Algorithm

Already have the APE firmware decompressed, but at this point I was able to determine the
nature of the decompression algorithm

Extremely simple dictionary compression

Compression stream comprises two types of symbol: literal bytes and dictionary references
▶ A simple 2048 byte dictionary buffer
▶ All output data (literal or referenced) is added to the dictionary buffer
▶ References output some subset of the dictionary buffer

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 29 / 54

The Decompression Algorithm
I was also able to determine the identity of the compression algorithm

▶ LZSS (Lempel-Ziv-Storer-Szymanski)
▶ It has a Wikipedia article

The decompression code was linked from Wikipedia the entire time
▶ Posted to simtel BBS in 1989: msdos/arcutils/lz_comp2.zip

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 30 / 54

The Decompression Algorithm

The decompression code was linked from
Wikipedia the entire time

▶ Posted to simtel BBS in 1989:
msdos/arcutils/lz_comp2.zip

Code is public domain
Decompression code fits on one screen
Broadcom version changes some constants
slightly, but same algorithm

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 31 / 54

The Decompression Algorithm

Your Broadcom Option ROM is compressed using some DOS compression code someone
posted to a BBS in 1989

If I had known the code was lying on an internet archive of 1989 BBS postings (of all
places) the entire time, I could have saved a lot of pain

▶ The only thing better than reverse engineering x86 real mode code is finding out you didn’t
have to

▶ but I couldn’t have figured out which algorithm it was without going through that process
(especially with the tweaked constants)

▶ Circular dependencies again

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 32 / 54

Penetrating the APE

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 33 / 54

The APE

Disassembly began in earnest to study the now decompressed APE code

APE turns out to be. . . an ARM Cortex-M3
▶ Common little-endian 32-bit microcontroller core, like you’d get on an STM32
▶ The APE has I/O peripherals and registers not mapped into PCIe and thus not available to the

host
▶ I want access

With knowledge of the decompression algorithm, I could write a tool to build and compress
a new APE image and flash it
But image headers were still a bit mysterious
And I wanted a quick way in that didn’t require me to flash an image to the SPI flash
permanently

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 34 / 54

Disaster

I suddenly discover that the APE firmware image appears to have an RSA signature at the
end

Oh no. Oh no, no, no
▶ I suddenly get very depressed
▶ I only continue after encouragement from others

⋆ “Maybe it isn’t checked”. . . I am skeptical, but continue

▶ Have I mentioned RE is an emotional rollercoaster?

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 35 / 54

APE: Looking for ways in
Looked for ways to get shellcode execution on the APE using the existing code
Lots of shared memory for communication with host & MIPS CPUs, so seemed plausible
APE code implements a simple mailbox-style IPC mechanism using some SRAM accessible
to the host, to allow host to send commands

One of these commands allowed “scratchpad read”/“scratchpad write”

Allows read/write to the APE’s private SRAM
▶ But it is bounds checked
▶ But the bounds check overlaps with the area the APE code is loaded into!?

Shellcode execution
Send scratchpad write commands to upload shellcode to a certain code region
Send a command which causes APE to jump into that code region
Success!

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 36 / 54

APE: Looking for ways in

Not really a vulnerability
▶ Can only be “exploited” from the host
▶ Host is trusted and can reflash the entire firmware on the SPI flash anyway
▶ It just saves writing a new image to flash, good for debug

For the curious: I didn’t find any remotely exploitable vulnerabilities in any code

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 37 / 54

APE: Shellcode (ape_shell.c)

I wrote shellcode for the APE
Shellcode implements a shared memory mailbox IPC mechanism with the host very similar
to that used by APE firmware
Shellcode allows arbitrary memory load/store or jump
Shellcode immediately modifies entries in the ARM core’s interrupt table to catch hardfaults

▶ If a hardfault occurs during a memory access, it is trapped by our custom handler and we
return an error

We can now access the APE’s private memory space!
The APE boot ROM was successfully dumped for the first time

▶ Got a much nicer ARM copy of the decompression code. If only I could have found a way to
get to this copy first! Circular dependencies again. . .

▶ Allowed image header format to be determined
▶ Boot ROM turns out to have a way to boot an APE image from SRAM, instead of flash,

which also proved useful

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 38 / 54

Disaster averted

The APE boot ROM does not check the RSA signature on the APE code image!
▶ Why is this signature here?

At this point we know how to get execution on the APE and form valid firmware images
Build tooling was developed to allow building custom compressed APE images in C

▶ Needed a compression function as well as the decompression function, so used the original
BBS code for it

Debug tooling was developed for probing APE registers, loading images from memory, etc.

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 39 / 54

APE: Reversing in earnest

The APE firmware was comprehensively reverse engineered and an understanding of the
APE’s peripherals was obtained

▶ Registers were completely unknown, no documentation
▶ Broadcom diagnostic tool provided information on some registers
▶ Others were simply guessed

The APE has the following special peripherals:
▶ Peripheral to talk to the BMC via the RMII interface
▶ Peripheral to transmit to each network port
▶ Peripheral to receive from each network port
▶ Management filters to configure what APE receives from network
▶ SMBus (not investigated)
▶ UART (not investigated)

All PCIe-mapped device registers are also accessible

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 40 / 54

APE: Block Diagram

MIPS CPU PCIe Func 0Port 0
MIPS CPU PCIe Func 1Port 1
MIPS CPU PCIe Func 2Port 2
MIPS CPU PCIe Func 3Port 3

Ethernet To Host

APE CPU
???

RX Filters
Net TX/RX

APE
Cortex-M3
RMII MAC

SMBus
UART

SPI Flash
Interface To Flash

MIPS CPU
MIPS CPU
MIPS CPU
MIPS CPU

NC-SI RMII
InterfaceTo BMC

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 41 / 54

APE: Block Diagram

MIPS CPU PCIe Func 0Port 0
MIPS CPU PCIe Func 1Port 1
MIPS CPU PCIe Func 2Port 2
MIPS CPU PCIe Func 3Port 3

Ethernet To Host

APE CPU
???

RX Filters
Net TX/RX

APE
Cortex-M3
RMII MAC

SMBus
UART

SPI Flash
Interface To Flash

MIPS CPU
MIPS CPU
MIPS CPU
MIPS CPU

NC-SI RMII
InterfaceTo BMC

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 41 / 54

APE: What it basically does

This is what the APE essentially does:
▶ It reads Ethernet frames from the RMU peripheral (NC-SI RMII interface to the BMC)
▶ Simple UART-style FIFO interface — no DMA, all memcpy

⋆ Performance is not great (you won’t get gigabit)

▶ It writes the Ethernet frame to special port-specific SRAM and sets some registers to get it
sent out

▶ And on and on. . . (and likewise in the opposite direction)

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 42 / 54

APE: What could it do?
If the APE were malicious (e.g. firmware compromise), what could it do?

The APE can set management filters to do matches on packet headers to determine if they
get forwarded to the APE

This is usually used for broadcasts, DHCP, ARP, etc.

APE can choose whether host also gets a copy, or whether the selected traffic only goes to
the APE

Ergo:

APE can eavesdrop on traffic from the network
APE can prevent the host from seeing traffic from the network
APE can MitM traffic between the network and the BMC

▶ Better hope the BMC doesn’t come with a default password
▶ Even if it does, APE can MitM SSH and own the box (unless you check the SSH host key, if

the vendor even provides it)

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 43 / 54

Skeletons: The Great Broadcom BitBang

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 44 / 54

The Great Broadcom BitBang

A problem

We are able to build our own replacement firmware for the APE and get NC-SI working
But it only works after the machine has been turned on once, not before
Hmm. . .

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 45 / 54

Found in the reversed APE firmware. . .
What is this???

if (!GetDevReg(0, REG_CHIP_ID)) {
SetAPEReg(REG_APE__GPIO, PIN0_OUT | PIN2_OUT

| PIN0_MODE_OUT | PIN1_MODE_OUT);
SetAPEReg(REG_APE__GPIO, PIN0_OUT | PIN2_OUT

| PIN0_MODE_OUT | PIN1_MODE_OUT | PIN2_MODE_OUT);

for (int i=39; i; –i)
SetAPEReg(REG_APE__GPIO,

GetAPEReg(REG_APE__GPIO) ^ (PIN0_OUT | PIN1_OUT));

MaskAPEReg(REG_APE__GPIO, PIN2_OUT);

while (!GetDevReg(0, REG_CHIP_ID));
}

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 46 / 54

Found in the reversed APE firmware. . .
Simplified in psuedocode:

if (!Port0.REG_CHIP_ID) { // If the silicon version register returns 0
// (shouldn’t be possible - it’s a constant)

set APE GPIO 0 as output (on)
set APE GPIO 1 as output (off)
set APE GPIO 2 as output (on)

for (repeat 38 times)
flip APE GPIOs 0 and 1; // ?????

set APE GPIO 2 as output (off)
// Wait for the register to read nonzero
while (!Port0.REG_CHIP_ID) { /* spin */ }

}

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 46 / 54

What is this for???

What do these “APE GPIOs” do?
▶ Let’s take a look at the Talos II schematics

What is this for???
What do these “APE GPIOs” do?

▶ Let’s take a look at the Talos II schematics

What is this for???
What do these “APE GPIOs” do?

▶ Let’s take a look at the Talos II schematics

What is this for???
What do these “APE GPIOs” do?

▶ Let’s take a look at the Talos II schematics

What is this for???
What do these “APE GPIOs” do?

▶ Let’s take a look at the Talos II schematics

What is this for???
What do these “APE GPIOs” do?

▶ Let’s take a look at the Talos II schematics

What is this for???
What do these “APE GPIOs” do?

▶ Let’s take a look at the Talos II schematics

What is this for???
What do these “APE GPIOs” do?

▶ Let’s take a look at the Talos II schematics

What is this for???
What do these “APE GPIOs” do?

▶ Let’s take a look at the Talos II schematics

What is this for???
What do these “APE GPIOs” do?

▶ Let’s take a look at the Talos II schematics

What is this for???
What do these “APE GPIOs” do?

▶ Let’s take a look at the Talos II schematics

You have got to be kidding

if (!GetDevReg(0, REG_CHIP_ID)) {
...GPIO weirdness...
while (!GetDevReg(0, REG_CHIP_ID));

}

REG_CHIP_ID is a silicon version register (“BCM5719 Rev A0”)
▶ It should never be zero, it’s a hardcoded constant
▶ If it’s reading zero, this means half the chip isn’t “up” yet
▶ This APE code is trying to fix this and get the rest of the chip to come up

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 48 / 54

The Great Broadcom BitBang

Turns out: Broadcom hardcoded the chip so the non-APE parts only come online after
several dozen PCIe REFCLK cycles

▶ After all, the host PCIe will always be there right?
▶ . . . Unless the host is off

Rather than actually fix this problem they mandated every customer put an
ANALOGUE PCIe MUX CHIP on their board so the APE firmware can
MANUALLY BITBANG CLOCK CYCLES on the PCIe REFCLK input of the
SAME CHIP to get the rest of it to come up
This is not a joke

If you have a server with a BCM5719 and NC-SI, your server vendor has been forced to add
an extra PCIe mux chip to the BOM because Broadcom decided to ship this as a design!

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 49 / 54

Project Ortega: Aftermath

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 50 / 54

Project Ortega: Outputs

Since all of this is based on reversing proprietary code, I was “tainted” by the process
▶ There was a desire to produce replacement open source firmware with a clean licence
▶ All of the gathered knowledge was used to produce documentation on how to write

replacement firmware (cleanroom reverse engineering)

Evan Lojewski (meklort) wrote replacement firmware in C++ using this information
▶ This firmware now ships on all newly ordered Talos II and Blackbird POWER9 systems, making

these systems 100% open source firmware — mission accomplished!
▶ It is also distributed by LVFS (fwupd)
▶ You can also install it on a BCM5719 PCIe card for your PC
▶ Please give a big thanks to meklort for making open source firmware for the BCM5719 a

reality

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 51 / 54

RE is an emotional rollercoaster

Sometimes, you think “I’m never going to figure this out”
▶ A million registers with unknown names and unknown values
▶ An enormity of unknown code

Then you figure something out, and it lets you figure other things out, and discoveries
snowball: the avalanche effect

Then the avalanche ends and you’re stuck again

Constant oscillation between exhilaration and a sense of impossibility

Successful RE requires managing these emotions and persevering

Weirdly like doing a 100-dimensional crossword
▶ With a million rows and a million columns

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 52 / 54

Looking back

I did not consider myself good at RE before starting this project

I just decided to take a quick look at the firmware image to see how inscrutable it was, and
was surprised by what I found. . . then I got sucked in

▶ Never could have imagined getting to this point
▶ I have a lot of curiosity — a powerful motivator
▶ What motivates others to do RE?

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 53 / 54

Join the community
Come talk on IRC: #talos-workstation (Liberachat)

Use the open source firmware: https://github.com/meklort/bcm5719-fw

Read the Project Ortega documentation: https://github.com/hlandau/ortega

Ask me questions about any of this: https://www.devever.net/~hl/contact

I am always available to answer questions on BCM5719

Acknowledgements
Thanks to IBM for open sourcing the POWER9 firmware
Thanks to Timothy Pearson at Raptor Engineering for creating the Talos II and providing
hardware and resources in support of this effort
Thanks to Evan Lojewski for creating open source replacement firmware
Thanks to the Talos community for the support and encouragement without which this
project could never have been possible

Hugo Landau Adventures in Reversing Broadcom NIC FW 2023-12-27 37C3 54 / 54

https://github.com/meklort/bcm5719-fw
https://github.com/hlandau/ortega
https://www.devever.net/~hl/contact

	Project Ortega: Motivations
	Device overview
	How I ended up reverse engineering x86 real mode decompression code
	Penetrating the APE
	Skeletons: The Great Broadcom BitBang
	Project Ortega: Aftermath

